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Suppose X is separable. By definition, there exists a countable dense set D such that D = X.
Since D is countable, X\ D is an open set. Hence D is a closed set and D = D. However this
leads to D = D = X. Since X is uncountable, this leads to contradiction. Hence X is not

separable.

Assume that the cocountable topology is Cj. Pick any x € X. There exists a countable local
base {U, }nen at z. By definition, X\U, is countable. Hence U,enX\U, = X\ Npen U, is

also countable. This shows that N, cnU, must be an uncountable set.

Pick any z € NpenU, and z # z. Consider the open set X\{z}. Clearly we have z € X\{z}.
Furthermore, since z € NyenUy, we have U,, ¢ X\{z} for all n € N. This contradicts with
the fact that {U, }nen is a local base at x.

To show that B is a base, we have to check:

e For any x € X, there exists some element D € B such that z € D;
e For any U,V € B and any x € U NV, there exists W € B such that t e W CUNV.

It is clear that € (x — 1,2 4 1) for any = € R. Next, pick any U,V € Bandx e UNV.

i. U = (a,b) and V = (¢,d) such that a < ¢ < b < d, then we have
x € (¢,b) C (a,b) N (c.d)
ii. If U = (a,b) and V = (¢,d)\K such that a < ¢ < b < d, then we have
z € (¢, b))\K C (a,b) N (c.d)\K
iii. f U = (a,b)\K and V = (¢, d) such that a < ¢ < b < d, then we have
z € (¢, b))\K C (a,b)\K N (c.d)
iv. f U = (a,b)\K and V = (¢,d)\ K such that a < ¢ < b < d, then we have
z € (¢,))\K C (a,0)\K N (c.d)\K

As a result, B is a base.

To show that T; ¢ Tk, note that the interval [0,1) € T; and 0 € [0,1). However, if I is an
element in B containing 0, we have I = (a,b) or I = (a,b)\K where a < 0 < b. In both cases,
we have § € I and I ¢ [0,1). So [0,1) & Tk.

To show that Tk ¢ T;, note that the interval (—1,1)\K € Tx. However, if I is an elements
in the base of lower limit topology containing 0, we have I = [a,b) for some a < 0 < b. In
particular, 1 € I for sufficiently large n and I ¢ (—1,1)\K. So (-1, 1)\K ¢ T;.



3.

(a) (=) Let x€ A= AUA". If x € A, then for any U € T with x € U, we have z € U N A and
hence UNA # (. If x € A’ and z ¢ A, by definition of A’, for any U € ¥ with z € U, we
have U N A\{x} # 0. Since z ¢ A, we have UN A =U N A\{z} # 0.

(<) Conversely, assume that for any U € T with € U, we have UN A #£ (. If x € A, then
we are done. If z ¢ A, then for any U € T with z € U, we have U N A\{z} = UN A # 0.
Hence z € A'.

(b) It follows easily by (a).

(¢) Suppose A is open. Then X\A is closed. Hence

A\ Frt(A) = A\(A N X\A) = A\(A N (X\A)) = (A\A) U (A\(X\A)) = AnA=A

Conversely, suppose A = A\ Frt(A). Pick any x € A. Since z ¢ Frt(A), there exists U € T
with 2 € U such that UN A = or U N (X\A) = (. Since X € U N A, we must have
UnN(X\A) =(. This implies that z € U C A. Hence A is open.

(d) Suppose z € Int(A). This implies that there exists U € T such that z € U C A. In particular,
we have U N (X\A4) = 0. So z & Frt(A).

(e) (<) Since A is closed, we have A = A. Since A is open, X\ A4 is closed and we have X\ A =
X\A. Hence Frt(A) = AN X\A= AN (X\A) = 0.
(=) Pick any © € A. Since = ¢ Frt(A), there exists U € ¥ containing = such that UN A =}
or UN(X\A) = 0. Since z € UN A, we must have UN(X\A) = (. Hence we have z € U C A.
This shows that A is open. By (c), we have A = A\ Frt(A) = A. Hence A is also closed.

(f) Consider A = [0,1] N Q. Note that A = [0,1], R\A = R. Hence Frt(4) = ANR\A = [0, 1]
and Frt(Frt(A)) = {0,1}. Clearly we have Frt(A) # Frt(Frt(A)).



